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1. INTRODUCTION

Non-linear one-dimensional approaches are useful for modelling the unsteady flows in the
breathing systems of internal combustion engines. These computational techniques have
been extensively used in the automotive industry to predict the influence of intake and
exhaust system geometry on engine performance parameters such as power output and
volumetric efficiency [1–5]. As expected, the non-linear techniques can also be used to
predict the acoustic characteristics and radiated sound for the intake and exhaust systems.
The non-linear computations can include several phenomena that are not adequately
treated by more traditional linear acoustic approaches such as valve flows, mean values
and their gradients, convective non-linearities, wave steepening and flow losses. These
factors, and particularly the highly non-linear flows through the valves and in the primary
manifold runners, are important for predicting radiated sound levels.

A variety of commercial, proprietary and research codes for modelling one-dimensional
flow in the duct systems of automotive engines are currently in use. It is generally
recognized that when used appropriately, these methods are capable of predicting cycle-
averaged engine performance parameters with good accuracy [1–5]. When used to predict
radiated sound levels, however, these techniques have been somewhat less successful. At
lower frequencies (below roughly 500 Hz), radiated sound levels are often predicted well
while at higher frequencies the results are generally viewed as unreliable.

A fundamental reason that these techniques do not perform well at high frequencies
is the assumption of one-dimensional fluid motion. This assumption fails when the
wavelength l is comparable to the transverse dimensions of an intake or exhaust system
element. Since l ¼ c=f ; where c is the speed of sound and f is the frequency, the one-
dimensional assumption limits the frequency range for which the analysis applies. In
addition, localized multi-dimensional motions may be important at sudden changes in
cross-sectional area, and in complicated geometric structures. Provided that non-linear
effects in the regions with multi-dimensional motions are small, non-linear and linear
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techniques can be coupled to overcome limitations from the one-dimensional assumption
[6, 7]. Including multi-dimensional effects in this manner is attractive since the non-linear
(and primarily one-dimensional) flows at the valves and primary runners can be included,
while a non-linear three-dimensional simulation of the entire system, which is impractical
for predictive tools, is avoided.

Another important, yet less discussed cause of inaccuracies in radiated sound
predictions is the behavior of the numerical schemes themselves. Specifically, the
numerical errors are due to the combined effects of: (1) the characteristics of the
numerical schemes and (2) how the schemes are applied in practice (the spatial and
temporal discretization). The selection of a numerical approach and how to apply it is a
compromise between the competing needs of accuracy, stability, speed and computational
requirements. For simulations of small acoustic disturbances, high order schemes may be
applied to achieve good accuracy and efficiency with a relatively coarse mesh. Higher
order schemes are more computationally complex, however, and can experience stability
problems for the non-linear physics and rapidly changing boundary conditions in intake
and exhaust system simulations. Thus, the majority of numerical methods applied for
intake and exhaust system simulations have been simpler, but less accurate (for a given
mesh) first or second order techniques. In addition, the accuracy of a simulation is
typically judged with respect to predictions of cycle-averaged performance parameters
such as volumetric efficiency, torque and power. Then, to minimize computational time,
the grid is typically set at the coarsest value that will give the required accuracy in engine
performance predictions. Such a grid, however, is likely to be insufficient for higher
frequency acoustic disturbances.

The objective of this study is to investigate the performance of a representative finite-
difference approach for small-amplitude disturbances. The investigation focuses on the
computational phase and amplitude errors incurred for sinusoidal disturbances
propagating in a stationary and inviscid medium. The explicit finite-difference technique
of Chapman and co-workers [5, 8] is applied for the non-linear balance equations of mass,
momentum and energy. This finite difference approach has been used extensively in design
tools for automotive intake and exhaust systems [5, 9]. Moreover, the basic behavior of
this approach is expected to be representative of a number of finite-difference schemes that
have been applied to duct flows in internal combustion engines (Lax-Wendroff,
MacCormack, etc.) [10–13].

2. BACKGROUND

In a finite-difference technique for compressible flows, the differential balance equations
for mass, momentum and energy, coupled with an equation of state, are approximated
over discrete intervals in time and space. In most cases, the finite-difference approxima-
tions will approach the original equations as the timestep ðDtÞ and node spacing ðDxÞ
approach zero. Since the timestep and nodal spacing must be finite, there will always be
some discrepancy between the original equations and finite-difference solution. The
overall discrepancies for a system of non-linear equations (as in the present study) are
difficult to determine analytically, and are beyond the scope of this work (see, for example,
references [14, 15]). However, the fundamental concepts can be demonstrated from the
analysis of a simpler linear equation.

A simplified model for wave propagation is given by the linear convection equation

@p

@t
þ c0

@p

@x
¼ 0; ð1Þ
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where t is the time, x is the axial co-ordinate and, from an acoustic viewpoint, p is the
acoustic (perturbation) pressure and c050 is the mean speed of sound, which is a constant.
Equation (1) thus represents the ideal translation of a simple acoustic wave in the positive
x direction at velocity c0: For a single-frequency harmonic disturbance entering the left
boundary and passing freely through the right boundary, an exact solution is given by

pðx; tÞ ¼ P0e
�ik0xeiot; ð2Þ

where P0 is an amplitude constant, i is the imaginary unit, k0 ¼ o=c0 is the wavenumber,
o ¼ 2pf is the angular frequency and f is the frequency.

A first order accurate finite-difference representation for equation (1) is given by (see
Appendix A)

pnþ1
j � pn

j

Dt
þ c0

pn
j � pn

j�1

Dx
¼ 0; ð3Þ

where the subscript j denotes a spatial index and superscript n denotes a temporal index.
Inspection of the two finite-difference terms in equation (3) indicates that the approximate
expression approaches the original differential equation as Dt and Dx approach zero.
However, direct inspection tells little about the differences between the discrete and
continuous equations, or the effects of the relative sizes of Dt and Dx: Additional
information is available from the modified equation, which represents the differential
equation that is actually being solved by the finite-difference representation. The modified
equation can be obtained by inserting Taylor series expansions for pnþ1

j and pn
j�1 into

equation (3) which, after rearrangement, gives
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A comparison of equations (4) and (1) clearly shows that the leading terms of the
truncation error for the finite-difference expression are of order Dt and Dx: To more easily
compare the behavior of the modified equation to the solution given by equation (2), the
spatial derivative terms in equation (4) are systematically eliminated using higher
derivatives of the modified equation asy
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With the introduction of the Courant number,

C ¼ c0Dt

Dx
; ð6Þ
yFor an initial value problem with periodic boundary conditions, the temporal derivatives are eliminated
[14, 16].
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equation (5) can be arranged as

@p

@t
þ c0

@p

@x
þ ðC� 1Þ Dx

2c0

@2p

@t2
þ ðC2 � 3Cþ 2Þ ðDxÞ2

6c2
0

 !
@3p

@t3

þ O½ðDtÞ3; ðDtÞ2Dx;DtðDxÞ2; ðDxÞ3	 ¼ 0: ð7Þ

Note that when C ¼ 1; the first- and second order truncation error terms in equation (7)
are zero. For this equation, the higher order truncation error terms are also zero for C ¼ 1;
and the modified equation is identical to the original differential equation.

If terms of higher order than ðDtÞ2 and ðDxÞ2 are ignored, a solution to equation (7)
consistent with the exact solution given by equation (2) is

*ppðx; tÞ ¼ P0e
�ik0ð1�ioðDx=2c0Þð1�CÞ�o2ððDxÞ2=6c2

0
ÞðC2�3Cþ2ÞÞxeiot; ð8Þ

where the superscript 
 has been used to denote the approximate solution. For the
boundary conditions considered, the discretization errors can be interpreted in terms of a
modified wavenumber k as

k ¼ k0 1 � io
Dx

2c0
ð1 � CÞ � o2 ðDxÞ2

6c2
0

ðC2 � 3Cþ 2Þ
 !

: ð9Þ

The deviation of k from k0 has both imaginary and real components. The imaginary
component is the result of odd derivatives in the truncation error and leads to amplitude
errors while the real component is due to the even derivative terms and result in phase
errors, or numerical dispersion. As indicated by equation (8), k ¼ k0 when C ¼ 1:

Taking the ratio of equations (8) and (2) and introducing the wavelength l ¼ 2pc0=o
gives

*ppðx; tÞ
pðx; tÞ ¼ e�pðDx=lÞð1�CÞk0x|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Amplitude error

eið2p2=3ÞðDx=lÞ2ðC2�3Cþ2Þk0x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Phase error

; ð10Þ

where the separate terms contributing to amplitude and phase errors have been denoted.
Equation (10) illustrates several characteristics of the approximate solution that are
commonly seen in explicit finite difference schemes used in internal combustion engine
simulations. As might be expected, errors due to spatial discretization are frequency
dependent, and are sensitive to the ratio between Dx and l: Thus, for a fixed nodal
spacing, errors will increase as the frequency increases and the number of nodes per
wavelength decreases. Equation (10) also indicates that errors for any value of Dx=l will
be zero when C ¼ 1: While this finding does not directly apply to the more complex system
of equations being solved in internal combustion engine simulations, numerical accuracy
will typically improve as C approaches an upper limit for the numerical approach.
However, C needs to remain below this limit to ensure numerical stability. The primary
dependence of numerical stability on C for the simple first order scheme is evident in the
amplitude error term of equation (10). For C > 1; the finite-difference approximation
gives an unbounded exponentially increasing function for the first term on the right-hand
side of equation (10). This is a physically implausible solution indicating that the
numerical method will be unstable. Therefore, C ¼ 1 is an upper limit and a reduction in C
to promote stability would result in a scheme that is somewhat dissipative.
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3. COMPUTATIONAL METHOD

In this study, the non-linear balance equations of mass, momentum and energy
are approximated using the explicit finite-difference technique of Chapman and
co-workers which has been described elsewhere [5, 8]. A principal component of
this computational method is the discretization of the continuity equation using
the approach described by Crowley [17]. When applied to equation (1), this approach
is second order accurate in both time and space. If the convection velocity (c0 in
equation (1)) is not constant, however, the accuracy of the numerical scheme is
reduced. Moreover, additional dissipation is introduced by an explicit artificial
viscosity [8], which is commonly needed for stability in higher order schemes.
Therefore, overall second order accuracy is not expected for the system of compressible
flow equations.

3.1. COMPUTATIONAL SYSTEM AND CONDITIONS

The computational approach is applied to the system depicted in Figure 1. This system
is representative of an impedance tube or transmission loss bench. Acoustic disturbances
are introduced at the left-hand side of the system, and the right-hand side is terminated
anechoically. Two geometries are considered. A straight duct of constant cross-sectional
area is studied first in order to focus on the dissipation and dispersion characteristics of the
numerical method. The second geometry is a simple expansion chamber with conical area
transitions which has been included to address the effects of dissipation and dispersion for
a simple, yet practical silencing element.

Simulations were performed for single frequency harmonic disturbances of small
amplitude (approximately 100 dB re 20 mPa). In order to match the conditions for
inviscid linear acoustic theory, viscous shear stress and heat transfer at the duct walls were
set to zero. Additional parameters for the simulations are included in Table 1. The
gas properties and ambient values are consistent with air at atmospheric conditions
ðc0 ¼ 346 m=sÞ; and are representative for flows in an automotive intake system.
Figure 1. Geometry for computational simulations.



Table 1

Values for simulation variables in the computations

Variable Description Value

f Frequency 25–3000 Hz
Dx Nodal spacing 0�1–1�0 cm
C Courant number 0�4; 0�6; 0�8
P0 Mean pressure 102�7 kPa
T0 Mean temperature 298 K
R Gas constant (Air) 287 kJ=kg K
g Ratio of specific heats 1�40

CADF Artificial dissipation factor 0�5
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3.2. OUTPUT DATA REDUCTION

For one-dimensional linear wave propagation in a duct of constant cross-section, the
exact solution for the acoustic pressure can be described as

pðtÞ ¼ Að f Þeiðot�kxÞ þ Bð f ÞeiðotþkxÞ; ð11Þ

where Að f Þ and Bð f Þ are amplitude constants representing disturbances propagating in
the positive and negative directions, respectively, and, for the ideal case with no losses,
k ¼ k0 ¼ o=c0: In terms of spectral components, equation (11) becomes

pð f Þ ¼ Að f Þe�ikx þ Bð f Þeikx: ð12Þ

Since the results of this study will be presented in terms of frequency-domain components,
the frequency designation ð f Þ will be omitted hereafter.

In many practical situations, deviations (physical or numerical) from ideal acoustic
propagation over short distances are small enough to be negligible, and it may be assumed
that k ¼ k0: However, in the present analysis, we wish to determine the phase and
amplitude errors caused by the numerical approach. As indicated by the results from the
analysis of the linear convection equation (9), deviations from the exact solution can be
included by considering a complex wavenumber as

k ¼ k0 � ia� b; ð13Þ

where a is a dissipation coefficient and b is a dispersion (phase error) coefficient. Thus, for
a simple wave propagating in the positive direction, equations (12) and (13) give

p ¼ Ae�iðk0�ia�bÞx ¼ Aeik0xe�axeibx ð14Þ

and the wave is attenuated as e�ax and incurs phase error as eibx:
In order to determine the values for the dissipation and dispersion constants for the

numerical method, acoustic pressures are sampled at fixed spatial locations as the time-
domain computations proceed. After the computations have completed, the sampled
pressures are converted into spectral components using a fast Fourier transform
algorithm. Values for a and b are then obtained from the spectral components using an
extension of the classic two-microphone technique [18, 19]. Since the value of k is
unknown, however, acoustic pressure spectra are needed at three locations rather than
twoz. For locations designated by O, I, and II having axial positions x ¼ 0; xI and xII;
zWith a perfectly anechoic termination, two sampling locations are sufficient. However, small reflections from
the termination boundary (typically less than 1%) necessitated a three-microphone technique.



LETTERS TO THE EDITOR 199
respectively (see Figure 1), the pressure spectra can be described by

p0 ¼ pðx ¼ 0Þ ¼ A þ B; ð15Þ

pI ¼ pðx ¼ xIÞ ¼ Ae�ikxI þ BeikxI ; ð16Þ

and

pII ¼ pðx ¼ xIIÞ ¼ Ae�ikxII þ BeikxII : ð17Þ

Combining equations (15)–(17) to eliminate the amplitude constants and rearranging
yields

pI

p0
ðe�ikxII � eikxIIÞ þ ðe�ikðxI�xIIÞ � eikðxI�xIIÞÞ � pII

p0
ðe�ikxI � eikxIÞ ¼ 0: ð18Þ

Equation (18) is a transcendental equation that can be solved to determine the complex
value of k (and therefore a and b). Once k is determined, the amplitude constants may be
obtained from equations (15) and (16) as in the two-microphone technique.

4. COMPUTATIONAL RESULTS

In this section, results demonstrating the dissipation and dispersion characteristics of
the finite-difference technique are presented. The computational approach is first applied
to simulate a simple wave propagating in a duct of constant cross-sectional area. The post-
processing technique described in the preceding section is then applied to determine the
dissipation and dispersion constants a and b; respectively, and investigate their behavior
for different spatial resolutions and the Courant numbers. The numerical approach is then
applied to an expansion chamber geometry to address the effects of numerical errors on a
simple silencing element with practical importance. Discrepancies between computations
and theory for the expansion chamber are then addressed in terms of the incident/
transmitted pressure ratio (both magnitude and phase) as well as the transmission loss.

4.1. STRAIGHT DUCT

Straight duct simulations were performed for nodal spacings of Dx ¼ 1; 0�5; 0�2 and
0�1 cm: The remaining computational parameters are as given in Table 1. Computed
results for the dissipation constant are included in Figure 2. The values for a have been
non-dimensionalized as al which, for a simple positive wave, represents the exponent of
the dissipative term in equation (14) for a propagation distance of one wavelength. Thus,
for a simple wave,

jpjðx ¼ lÞ
jpjðx ¼ 0Þ ¼ e�al: ð19Þ

Nodal spacing is non-dimensionalized as Dx=l ¼ 1=m; where m is the number of
computational cells per wavelength. The values obtained collapse to three curves
representing the three different Courant numbers used. This is consistent with the
findings in equation (10) for the simple first order scheme and confirms that the dissipation
does not depend on the absolute value of Dx; but rather the ratios Dx=l and C: As
expected, a depends strongly on the number of cells per wavelength. The parameters in
Figure 2 closely follow a linear relationship, where

al 
 Dx

l
¼ 1

m
; ð20Þ



Figure 2. Non-dimensionalized dissipation constant al versus Dx=l for varied Courant number: }}, C ¼
0�4; – – – –, C ¼ 0�6; 2 �2 �2; C ¼ 0�8:
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suggesting that the overall finite-difference approach for the compressible flow equations
has first order behavior (compare with the amplitude error term of equation 10). The
linear relationship between a and Dx=l indicates that in terms of the sound pressure level
(SPL) for a sinusoidal wave,

SPL ¼ 20 log10

jpj=
ffiffiffi
2

p

20 mPa

 !
; ð21Þ

the drop in SPL for a simple wave gives

DSPL ¼SPLðx ¼ 0Þ � SPLðxÞ 
 log10 eax 
 al
x

l

 �

 Dx

l

� �
x

l

 �
¼ 1

m

x

l

 �
: ð22Þ

Thus, for fixed C and frequency, the sound pressure level decreases linearly with x and the
rate at which the SPL decreases is directly proportional to Dx: The results in Figure 2 also
indicate a rather strong dependence of a on the Courant number. Consistent with most
comparable explicit schemes, the dissipation decreases as the Courant number increases
toward unity. At a particular Dx=l; the value of a for C ¼ 0�4 is approximately 1�7 times
the value for C ¼ 0�8: Therefore, in addition to using the largest Courant number possible
for stability, care should be taken to ensure that Dx=c is nearly the same for all points in
the system.

Values obtained for the dispersion coefficient in the straight duct simulations are
included in Figure 3. Similar to Figure 2, b is non-dimensionalized as bl; and Dx is non-
dimensionalized as Dx=l: For the simple positive wave, bl represents the error in phase
angle for a propagation distance of one wavelength. Again, as expected, the values
collapse to three curves corresponding to three different Courant numbers. While a strong
dependence of b on Dx=l is evident, it can be seen that the phase angle errors are less
sensitive to Courant number than the dissipation errors. At a fixed value of Dx=l; the
variation in b between C ¼ 0�4 and 0�8 is less than 10%.



Figure 3. Non-dimensionalized dispersion coefficient ðblÞ versus Dx=l for varied Courant number: }},
C ¼ 0�4; – – – –, C ¼ 0�6; 2 �2 �2; C ¼ 0�8:
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For a fixed value of C; the functional dependence between the parameters in Figure 2 is
closely represented by

bl 
 Dx

l

� �2

¼ 1

m2
; ð23Þ

which is consistent with the behavior of the dispersion errors found in the analysis of the
first order scheme equation (10). Provided that the proportionality constant in equation
(23) is not much greater than that for equation (20), dispersion errors can be expected to
be of less importance than dissipation errors since Dx=l{1: This is confirmed by the
magnitudes of al and bl in Figures 2 and 3. For example, with m ¼ 100 computational
cells per wavelength ðDx=l ¼ 1=m ¼ 0�01Þ; representative values for al and bl are 0�05
and 0�001 respectively. Therefore, after a travel distance of 10 wavelengths, the amplitude
of a simple wave will be reduced by approximately 40%, while the phase error will be
approximately 0�01 rad ð0�68).

4.2. EXPANSION CHAMBER

The expansion chamber geometry modelled in this study is depicted in Figure 4. To
avoid the use of boundary conditions at the ends of the expansion chamber (the area
expansion and contraction), short conical transitions are used rather than area
discontinuities. The three-microphone technique described earlier is applied in both the
inlet and exit ducts to separate the positive and negative acoustic wave components.
Results from the simulations are presented in terms of the modulus and argument of the
ratio between the transmitted and incident waves ðA3=A1Þ at the locations depicted in
Figure 4. In addition, the transmission loss, defined as

TL ¼ 20 log10

A1

A3

����
���� ð24Þ



Figure 4. Expansion chamber geometry used in the simulations (dimensions in cm).
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is computed and compared for the different simulations. Nodal spacings used in the
expansion chamber simulations were Dx ¼ 1 and 1

9
cm: The other parameters for the

expansion chamber computations are as given in Table 1.
Figures 5 and 6 include the modulus of A3=A1 for Dx ¼ 1 and 1

9
cm respectively. In each

figure, the results for the varying Courant numbers are compared to inviscid plane wave
theory. As expected, the agreement between the computations and theory is good at low
frequencies, and worsens as the frequency increases (Dx=l increases). The amount of
dissipation for Dx ¼ 1 cm at higher frequencies is dramatic, particularly considering the
relatively short length of the expansion chamber. A comparison of Figures 5 and 6 clearly
demonstrates the reduction in dissipation when nodal spacing decreases. At higher
frequencies, the effect of dissipation is most evident near the peaks in jA3=A1j;
corresponding to attenuation minima for the expansion chamber. Away from these
peaks, the results are less sensitive to the numerical dissipation. For all simulations,
increasing the Courant number reduces dissipation, although changes in the Courant
number are somewhat less significant than nodal spacing effects.

Figures 7 and 8 compare the theoretical and computed phase angle of A3=A1 for Dx ¼ 1
and 1

9
cm, respectively. Consistent with the straight pipe results depicted in Figure 3, phase

angle discrepancies increase as Dx=l increases due to either increased frequency or nodal
spacing. The small effect of the Courant number on the phase errors for the expansion
chamber is also consistent with the straight pipe simulations. With consideration of the
dissipation effects depicted in Figures 5 and 6, the phase errors for both nodal spacings
can be seen to be comparatively insignificant for the entire frequency range considered.
This confirms the findings from Figures 2 and 3 that phase errors are less likely to be of
concern than dissipation.

Comparisons between the computed and theoretical transmission loss for the expansion
chamber geometry are included in Figures 9 and 10. For the Dx ¼ 1 cm simulations
(Figure 9), the discrepancies between theory and computations are evident at frequencies
between 500 and 1000 Hz: At higher frequencies, the dome-like behavior of the expansion
chamber is lost entirely, and deviations between computations and theory are, depending
somewhat on the Courant number, roughly 15–25 dB: When the nodal spacing is reduced
to Dx ¼ 1

9
cm (Figure 10), the effects of dissipation on the transmission loss are reduced

considerably. Note, for example, that the maximum deviation in transmission loss at
attenuation maxima locations is approximately 1�5 dB: Dissipation effects are still evident
at the higher frequency passband locations, but are, nevertheless, much improved from the
Dx ¼ 1 cm case.



Figure 6. Modulus of transmitted/incident pressure ratio versus frequency for Dx ¼ 1
9
cm and varied Courant

number: }}, C ¼ 0�4; – – – –, C ¼ 0�6; 2 �2 �2; C ¼ 0�8; - - - - -, theory.

Figure 5. Modulus of transmitted/incident pressure ratio versus frequency for Dx ¼ 1 cm and varied Courant
number: }}, C ¼ 0�4; – – – –, C ¼ 0�6; 2 �2 �2; C ¼ 0�8; - - - - -, theory.
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5. CONCLUDING REMARKS

The acoustic performance of an explicit finite-difference approach for the wave
dynamics in internal combustion engines has been investigated. Computational simula-
tions of a simple wave propagating in a straight pipe and simple expansion chamber
geometry demonstrated the dependence of numerical errors on both the nodal



Figure 8. Argument of transmitted/incident pressure ratio versus frequency for Dx ¼ 1
9
cm and varied Courant

number: }}, C ¼ 0�4; – – – –, C ¼ 0�6; 2 �2 �2; C ¼ 0�8; - - - - -, theory.

Figure 7. Argument of transmitted/incident pressure ratio versus frequency for Dx ¼ 1 cm and varied
Courant number: }}, C ¼ 0�4; – – – –, C ¼ 0�6; 2 �2 �2; C ¼ 0�8; - - - - -, theory.
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resolution ðDx=lÞ and Courant number C ¼ cDt=Dx: Dissipation was found to be highly
dependent on nodal resolution with Courant number effects being less dramatic, but still
very important. Phase angle errors were found to depend primarily on nodal resolution,
with Courant number being relatively insignificant. For a given value of Dx=l and C; it
was demonstrated that phase angle errors are insignificant in comparison to errors
caused by dissipation. Errors caused by the dissipation effects can be expected to be



Figure 9. Transmission loss versus frequency for Dx ¼ 1 cm and varied Courant number: }}, C ¼ 0�4;
– – – –, C ¼ 0�6; 2 �2 �2; C ¼ 0�8; - - - - -, theory.

Figure 10. Transmission loss versus frequency for Dx ¼ 1
9
cm and varied Courant number: }}, C ¼ 0�4;

– – – –, C ¼ 0�6; 2 �2 �2; C ¼ 0�8; - - - - -, theory.
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most significant near passband locations where the actual attenuation of a reactive silencer
is smallest.

For a fixed Courant number, the sound pressure level of a simple wave propagating in
the positive direction was found to decrease linearly with Dx=l due to dissipation. As a
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guideline for modelling an intake or exhaust system, a maximum allowable reduction in
sound pressure level DSPL for a straight duct of equivalent length can be specified. Then,
using equation (22),

DSPL 
 Dx

l
x

l

 �
¼ Dx

c2
0

f 2
maxL; ð25Þ

where fmax is the maximum frequency of interest and L is the total length of the system.
For a fixed value of DSPL; equation (25) can be viewed as

Dx 
 c2
0

f 2
maxL

: ð26Þ

Thus, for the same allowable DSPL due to dissipation, (1) doubling the system length
requires that Dx be reduced by a factor of two and (2) doubling the maximum frequency of
interest requires that Dx be reduced by a factor of four.

The characteristics observed for this numerical scheme suggest that numerical
dissipation may be an important reason that acoustic predictions from automotive
simulation codes are inaccurate at higher frequencies. Effects of dissipation for the
expansion chamber with Dx ¼ 1�0 cm (a representative nodal spacing for intake systems in
practice) were dramatic, particularly considering the short length of the silencer. These
results indicate that nodal spacing needs to be reduced in order to avoid high-frequency
dissipation, which will result in longer computational times. Also, in order for the Courant
number to be as close to unity as possible, Dx=c should be nearly the same throughout the
system. This may prove difficult in the exhaust system, since the speed of sound will vary
with location and operating conditions. Finally, while the results presented in the study
were obtained from a single computational technique, the general behavior is expected to
be representative of a number of approaches that are currently in use for modelling the
unsteady flows in automotive intake and exhaust systems.
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APPENDIX A: FINITE DIFFERENCE FORM OF EQUATION (1)

Consider a continuous function p that depends on the independent variables x and t as

p ¼ pðx; tÞ: ðA:1Þ

A Taylor series expansion of p for a time interval Dt gives

pðx; t þ DtÞ ¼ p þ @p

@t
Dt þ @2p

@t2
ðDtÞ2

2!
þ @3p

@t3
ðDtÞ3

3!
þ � � � : ðA:2Þ

Equation (A.2) can be rearranged as

@p

@t
¼ pðx; t þ DtÞ � p

Dt
� @2p

@t2
ðDtÞ
2!

� @3p

@t3
ðDtÞ2

3!
� � � � : ðA:3Þ

Neglecting all terms of order Dt and higher, gives

@p

@t
¼ pðx; t þ DtÞ � p

Dt
þ OðDtÞ; ðA:4Þ

where the notation OðDtÞn is used to indicate an nth order accurate expression (the leading
term that has been truncated is proportional to ðDtÞn). Using variables j and n for spatial
and temporal indices, respectively, gives a first order accurate finite-difference representa-
tion of @p=@t as

@p

@t
¼

pnþ1
j � pn

j

Dt
þ OðDtÞ: ðA:5Þ

A Taylor series expansion of p with respect to x for the interval �Dx gives

pðx � Dx; tÞ ¼ p � @p

@x
Dx þ @2p

@x2

ðDxÞ2

2!
� @3p

@x3

ðDxÞ3

3!
þ � � � : ðA:6Þ
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Equation (A.6) can be rearranged to give a first order accurate representation for @p=@x as

@p

@x
¼

pn
j � pn

j�1

Dx
þ OðDxÞ: ðA:7Þ

Inserting equations (A.5) and (A.7) into equation (1) gives a finite difference
representation of the linear convection equation as

pnþ1
j � pn

j

Dt
þ c0

pn
j � pn

j�1

Dx
þ OðDt;DxÞ ¼ 0; ðA:8Þ

which has first order accuracy in both Dt and Dx:
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